		So Engineering a the	
		CBCS SCHEME	
USN		18I	EC55
		Fifth Semester B.E. Degree Examination, July/August 2021	
Electromagnetic Waves			
Tin	ne: .	3 hrs. Max. Marks: Max. Marks: Max. Marks:	:100
1	a.	Point charges of 50nc each are located at A(1, 0, 0), B(-1, 0, 0), C(0, 1, 0) and D(0, -	-1, 0).
		Determine the total force on the charge at A. Also, find \vec{E} at 'A'. (07 M	Marks)
	b.	Two point charges, 5μ C and -3μ C are placed along a straight line 10m apart. Determi	ne the
	c.	Derive an expression for electric field intensity at a point due to an infinite sheet c	harge,
		$\rho_{\rm S}$ c/m ² . Compare the nature of this field with that of infinite line charge. (06 N	Marks)
2	a.	Given the two points C(-3, 2, 1) and D(5, 20° , -70°), find the spherical coordinates	of 'C'
	b.	A uniform line charge, infinite in extent, with the density $34nc/m$ is located at $x = -32$	m and
		$z = 5m \text{ in free space. Find } \vec{E} \text{ at } P(1, 12, 4)m. $ (07 N) Find the total abaves with in each of the indicated configuration (07 N)	Marks)
	C.	i) $0 \le \rho \le 0.1$, $0 \le \phi \le \pi$, $2 \le z \le 4$ and $\rho_v = \rho^2 z^2 \sin(0.6\phi)$	
		ii) Universe : $\rho_v = \frac{e^{-2r}}{2}$. (06 N	Marks)
			,
3	a.	A cube of side 2m is centred at the origin with edges parallel to the coordinate axes x^{3}	of the
		rectangular coordinate system. If $\vec{D} = 10 \frac{x}{3} \hat{a}_x, c/m^2$, find the volume charge density.	Also,
		find the total charge enclosed by the cube. (06 M	Marks)
	b.	A vector field is given by $\vec{A} = 30e^{-r}\hat{a}_r - 2z\hat{a}_z$, verify the divergence theorem for the vector field by $r = 2$, $z = 0$ and $z = 5$.	olume
	c.	Determine the electric field intensity everywhere due to a spherical volume char	ge of
		density, $\rho_v c/m^3$ using Gauss's law. Also, sketch E as a function of distance. (06 N	Marks)
4	a.	Calculate the work done in moving a 4C charge from $B(1, 0, 0)$ to $A(0, 2, 0)$ along the	e path
	Ç	$y = 2 - 2x, z = 0$ in the field $\vec{E} = 5x \hat{a}_x + 5y \hat{a}_y, V/m$. (07 N	Marks)
	0.	State and explain the continuity equation of current. Also, mention its physical signification (08 N	cance. Marks)
	c.	Given the potential field, $V = 2x^2y - 5z$ and a point P(-4, 3, 6), find the numerical val	ues of
		the following quantities at point, P : 1) Electric potential 11) Electric field intens	ity E
		111) the direction of E (v) electric flux density, D (v) volume charge density ρ_v . (05 N	Marks)
5	a.	Using the Laplace's equation, derive an expression for capacitance per unit length coaxial cable using the following boundary conditions :	ı of a
		$V = V_0 \text{ at } r = a, \text{ and } V = 0 \text{ at } r = b, b > a. $ (08 N	Marks)
	b.	Determine \vec{H} at (0.4, 0.3, 0) in the field of 8A filamentary current directed inward infinity to the origin on the positive x, axis and then outward to infinity along the x axis	from
		(08 N	s. Marks)
	c.	State and explain the Stoke's theorem. (04 N 1 of 2	Marks)
	G		

18EC55

(08 Marks)

(08 Marks)

(06 Marks)

- a. Given the potential field $V = (Ar^4 + Br^{-4}) \sin(4\phi)$, show that $\nabla^2 V = 0$. Also find A and B such that V = 100 volts and $|\vec{E}| = 500V/m$ at $p(1, 22.5^\circ, 2)$. (07 Marks)
- b. Evaluate both sides of the Stoke's theorem for the field, $\vec{H} = 6xy\hat{a}_x 3y^2\hat{a}_y$, A/m and the rectangular path around the region $2 \le x \le 5$, $-1 \le y \le 1$, z = 0. Let the positive direction of $d\vec{S}$ be \hat{a}_z . (07 Marks)
- c. State the following and write the corresponding equations : Biot Savart law, Ampere's law and Curl F.
 (06 Marks)
- 7 a. Derive an expression for the force acting between two differential current elements.
 - b. Find the magnetization in a wire where i) $\mu = 1.8 \times 10^{-5}$ H/m, and H = 120A/m ii) $\mu_r = 22$, there are 8.3×10^{28} atoms/m³ and each atom has a dipole moment of 4.5×10^{-27} A-m² iii) $\beta = 300\mu$ T and $\Psi_m = 15$. (08 Marks)
 - c. A conducting filamentary triangle joins points A(3, 1, 1), B(5, 4, 2) and C(1, 2, 4). The
 - segment AB carries a current of 0.2A in \hat{a}_{AB} direction. The magnetic field is
 - $\vec{B} = 0.2 \hat{a}_x 0.1 \hat{a}_y + 0.3 \hat{a}_z T$.
 - i) Find the force on segment BC
 - ii) The torque on the loop about an origin at 'A'
 - iii)The torque on the loop about an origin at 'C'.
- 8 a. Obtain the torque on a square loop having the corners (-2, -2, 0), (2, -2, 0), (2, 2, 0) and (-2, 2, 0):
 - i) About the origin by $\vec{B} = 0.4 \hat{a}_x T$;
 - ii) About the origin by $\vec{B} = 0.6 \hat{a}_x 0.4 \hat{a}_y$ T and
 - iii) About (4, 6, 8) by $\vec{B} = 0.4\hat{a}_x + 0.6\hat{a}_y 0.7\hat{a}_z$ T. Take I = 0.8A. (08 Marks)
 - b. Determine the boundary conditions for the magnetic field at the interface between two different magnetic materials. (06 Marks)
 - c. Derive the Maxwell's equation from Faraday's law of electromagnetic induction. (06 Marks)
- 9 a. Let $\mu = 10^{-5}$ H/m, $\epsilon = 4 \times 10^{-9}$ F/m, $\sigma = 0$ and $\rho_v = 0$. Determine 'K' so that each of the following pair of fields satisfies Maxwell's equation :

)
$$\vec{D} = 2x \hat{a}_x - 3y \hat{a}_y + 4z \hat{a}_z nC/m^2$$
, $\vec{H} = Kx \hat{a}_x + 10y \hat{a}_y - 25z \hat{a}_z A/m$

ii) $\vec{E} = (20y - kt)\hat{a}_x V/m$, $\vec{H} = (y + 2 \times 10^6 t)\hat{a}_z A/m$.

- b. Explain the wave propagation in good conductors using the skin depth. (06 Marks)
- c. For a perfect dielectric medium, $\mu_r = 1$ and $\epsilon_r = 81$ at f = 1MHz. Determine attenuation constant, phase constant, propagation constant, wave length, phase velocity and intrinsic impedance for the medium. (06 Marks)
- 10 a. In a certain dielectric medium, $\epsilon_r = 5$, $\sigma = 0$ and displacement current density.

 $\vec{J}_{d} = 20\cos(1.5 \times 10^{8} t - \beta x)\hat{a}_{y} \mu A/m^{2}$. Determine the electric flux density and electric field intensity. (06 Marks)

- b. Explain the propagation of electromagnetic waves in free space. (08 Marks)
- c. State and prove Poynting theorem.

* * * * *